SciDuet
This dataset supports the document-to-slide generation task where a model has to generate presentation slide content from the text of a document.
You can load the dataset via:
import datasets
data = datasets.load_dataset('GEM/SciDuet')
The data loader can be found here.
website
paper
authors
Edward Sun, Yufang Hou, Dakuo Wang, Yunfeng Zhang, Nancy Wang
Quick-Use
Multilingual?
Is the dataset multilingual?
Is the dataset multilingual?
no
Covered Languages
What languages/dialects are covered in the dataset?
What languages/dialects are covered in the dataset?
English
License
What is the license of the dataset?
What is the license of the dataset?
apache-2.0: Apache License 2.0
Additional Annotations?
Does the dataset have additional annotations for each instance?
Does the dataset have additional annotations for each instance?
none
Contains PII?
Does the source language data likely contain Personal Identifying Information about the data creators
or subjects?
Does the source language data likely contain Personal Identifying Information about the data creators or subjects?
yes/very likely
Dataset Overview
-
Where to find the Data and its Documentation
-
Languages and Intended Use
-
Credit
-
Dataset Structure
-
Where to find the Data and its Documentation
-
Languages and Intended Use
-
Credit
-
Dataset Structure
Where to find the Data and its Documentation
Webpage
What is the webpage for the dataset (if it exists)?
What is the webpage for the dataset (if it exists)?
Download
What is the link to where the original dataset is hosted?
What is the link to where the original dataset is hosted?
Paper
What is the link to the paper describing the dataset (open access preferred)?
What is the link to the paper describing the dataset (open access preferred)?
BibTex
Provide the BibTex-formatted reference for the dataset. Please use the correct published version
(ACL anthology, etc.) instead of google scholar created Bibtex.
Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex.
@inproceedings{sun-etal-2021-d2s,
title = "{D}2{S}: Document-to-Slide Generation Via Query-Based Text Summarization",
author = "Sun, Edward and
Hou, Yufang and
Wang, Dakuo and
Zhang, Yunfeng and
Wang, Nancy X. R.",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.111",
doi = "10.18653/v1/2021.naacl-main.111",
pages = "1405--1418",
abstract = "Presentations are critical for communication in all areas of our lives, yet the creation of slide decks is often tedious and time-consuming. There has been limited research aiming to automate the document-to-slides generation process and all face a critical challenge: no publicly available dataset for training and benchmarking. In this work, we first contribute a new dataset, SciDuet, consisting of pairs of papers and their corresponding slides decks from recent years{'} NLP and ML conferences (e.g., ACL). Secondly, we present D2S, a novel system that tackles the document-to-slides task with a two-step approach: 1) Use slide titles to retrieve relevant and engaging text, figures, and tables; 2) Summarize the retrieved context into bullet points with long-form question answering. Our evaluation suggests that long-form QA outperforms state-of-the-art summarization baselines on both automated ROUGE metrics and qualitative human evaluation.",
}
Has a Leaderboard?
Does the dataset have an active leaderboard?
Does the dataset have an active leaderboard?
no
Languages and Intended Use
Multilingual?
Is the dataset multilingual?
Is the dataset multilingual?
no
Covered Languages
What languages/dialects are covered in the dataset?
What languages/dialects are covered in the dataset?
English
License
What is the license of the dataset?
What is the license of the dataset?
apache-2.0: Apache License 2.0
Intended Use
What is the intended use of the dataset?
What is the intended use of the dataset?
Promote research on the task of document-to-slides generation
Primary Task
What primary task does the dataset support?
What primary task does the dataset support?
Text-to-Slide
Credit
Curation Organization Type(s)
In what kind of organization did the dataset curation happen?
In what kind of organization did the dataset curation happen?
industry
Curation Organization(s)
Name the organization(s).
Name the organization(s).
IBM Research
Dataset Creators
Who created the original dataset? List the people involved in collecting the dataset and their
affiliation(s).
Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s).
Edward Sun, Yufang Hou, Dakuo Wang, Yunfeng Zhang, Nancy Wang
Funding
Who funded the data creation?
Who funded the data creation?
IBM Research
Who added the Dataset to GEM?
Who contributed to the data card and adding the dataset to GEM? List the people+affiliations
involved in creating this data card and who helped integrate this dataset into GEM.
Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM.
Yufang Hou (IBM Research), Dakuo Wang (IBM Research)
Dataset Structure
How were labels chosen?
How were the labels chosen?
How were the labels chosen?
The original papers and slides (both are in PDF format) are carefully processed by a combination of PDF/Image processing tookits. The text contents from multiple slides that correspond to the same slide title are mreged.
Data Splits
Describe and name the splits in the dataset if there are more than one.
Describe and name the splits in the dataset if there are more than one.
Training, validation and testing data contain 136, 55, and 81 papers from ACL Anthology and their corresponding slides, respectively.
Splitting Criteria
Describe any criteria for splitting the data, if used. If there are differences between the splits
(e.g., if the training annotations are machine-generated and the dev and test ones are created by
humans, or if different numbers of annotators contributed to each example), describe them here.
Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.
The dataset integrated into GEM is the ACL portion of the whole dataset described in the paper, It contains the full Dev and Test sets, and a portion of the Train dataset. Note that although we cannot release the whole training dataset due to copyright issues, researchers can still use our released data procurement code to generate the training dataset from the online ICML/NeurIPS anthologies.
Dataset in GEM
-
Rationale for Inclusion in GEM
-
GEM-Specific Curation
-
Getting Started with the Task
-
Rationale for Inclusion in GEM
-
GEM-Specific Curation
-
Getting Started with the Task
Rationale for Inclusion in GEM
Why is the Dataset in GEM?
What does this dataset contribute toward better generation evaluation and why is it part of GEM?
What does this dataset contribute toward better generation evaluation and why is it part of GEM?
SciDuet is the first publicaly available dataset for the challenging task of document2slides generation, which requires a model has a good ability to "understand" long-form text, choose appropriate content and generate key points.
Similar Datasets
Do other datasets for the high level task exist?
Do other datasets for the high level task exist?
no
Ability that the Dataset measures
What aspect of model ability can be measured with this dataset?
What aspect of model ability can be measured with this dataset?
content selection, long-form text undersanding and generation
GEM-Specific Curation
Modificatied for GEM?
Has the GEM version of the dataset been modified in any way (data, processing, splits) from the
original curated data?
Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data?
no
Additional Splits?
Does GEM provide additional splits to the dataset?
Does GEM provide additional splits to the dataset?
no
Getting Started with the Task
Previous Results
-
Previous Results
-
Previous Results
Previous Results
Measured Model Abilities
What aspect of model ability can be measured with this dataset?
What aspect of model ability can be measured with this dataset?
content selection, long-form text undersanding and key points generation
Metrics
What metrics are typically used for this task?
What metrics are typically used for this task?
ROUGE
Proposed Evaluation
List and describe the purpose of the metrics and evaluation methodology (including human
evaluation) that the dataset creators used when introducing this task.
List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task.
Automatical Evaluation Metric: ROUGE Human Evaluation: (Readability, Informativeness, Consistency)
- Readability: The generated slide content is coherent, concise, and grammatically correct;
- Informativeness: The generated slide provides sufficient and necessary information that corresponds to the given slide title, regardless of its similarity to the original slide;
- Consistency: The generated slide content is similar to the original author’s reference slide.
Previous results available?
Are previous results available?
Are previous results available?
yes
Other Evaluation Approaches
What evaluation approaches have others used?
What evaluation approaches have others used?
ROUGE + Human Evaluation
Relevant Previous Results
What are the most relevant previous results for this task/dataset?
What are the most relevant previous results for this task/dataset?
Paper "D2S: Document-to-Slide Generation Via Query-Based Text Summarization" reports 20.47, 5.26 and 19.08 for ROUGE-1, ROUGE-2 and ROUGE-L (f-score).
Dataset Curation
-
Original Curation
-
Language Data
-
Structured Annotations
-
Consent
-
Private Identifying Information (PII)
-
Maintenance
-
Original Curation
-
Language Data
-
Structured Annotations
-
Consent
-
Private Identifying Information (PII)
-
Maintenance
Original Curation
Original Curation Rationale
Original curation rationale
Original curation rationale
Provide a benchmark dataset for the document-to-slides task.
Sourced from Different Sources
Is the dataset aggregated from different data sources?
Is the dataset aggregated from different data sources?
no
Language Data
How was Language Data Obtained?
How was the language data obtained?
How was the language data obtained?
Other
Data Validation
Was the text validated by a different worker or a data curator?
Was the text validated by a different worker or a data curator?
not validated
Data Preprocessing
How was the text data pre-processed? (Enter N/A if the text was not pre-processed)
How was the text data pre-processed? (Enter N/A if the text was not pre-processed)
Text on papers was extracted through Grobid. Figures andcaptions were extracted through pdffigures. Text on slides was extracted through IBM Watson Discovery package and OCR by pytesseract. Figures and tables that appear on slides and papers were linked through multiscale template matching by OpenCV. Further dataset cleaning was performed with standard string-based heuristics on sentence building, equation and floating caption removal, and duplicate line deletion.
Was Data Filtered?
Were text instances selected or filtered?
Were text instances selected or filtered?
algorithmically
Filter Criteria
What were the selection criteria?
What were the selection criteria?
the slide context text shouldn't contain additional format information such as "*** University"
Structured Annotations
Additional Annotations?
Does the dataset have additional annotations for each instance?
Does the dataset have additional annotations for each instance?
none
Annotation Service?
Was an annotation service used?
Was an annotation service used?
no
Consent
Any Consent Policy?
Was there a consent policy involved when gathering the data?
Was there a consent policy involved when gathering the data?
yes
Consent Policy Details
What was the consent policy?
What was the consent policy?
The original dataset was open-sourced under Apache-2.0.
Some of the original dataset creators are part of the GEM v2 dataset infrastructure team and take care of
integrating this dataset into GEM.
Private Identifying Information (PII)
Contains PII?
Does the source language data likely contain Personal Identifying Information about the data
creators or subjects?
Does the source language data likely contain Personal Identifying Information about the data creators or subjects?
yes/very likely
Categories of PII
What categories of PII are present or suspected in the data?
What categories of PII are present or suspected in the data?
generic PII
Any PII Identification?
Did the curators use any automatic/manual method to identify PII in the dataset?
Did the curators use any automatic/manual method to identify PII in the dataset?
no identification
Maintenance
Any Maintenance Plan?
Does the original dataset have a maintenance plan?
Does the original dataset have a maintenance plan?
no
Broader Social Context
-
Previous Work on the Social Impact of the Dataset
-
Impact on Under-Served Communities
-
Discussion of Biases
-
Previous Work on the Social Impact of the Dataset
-
Impact on Under-Served Communities
-
Discussion of Biases
Previous Work on the Social Impact of the Dataset
Usage of Models based on the Data
Are you aware of cases where models trained on the task featured in this dataset ore related tasks
have been used in automated systems?
Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems?
no
Impact on Under-Served Communities
Addresses needs of underserved Communities?
Does this dataset address the needs of communities that are traditionally underserved in language
technology, and particularly language generation technology? Communities may be underserved for
exemple because their language, language variety, or social or geographical context is
underepresented in NLP and NLG resources (datasets and models).
Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models).
no
Discussion of Biases
Any Documented Social Biases?
Are there documented social biases in the dataset? Biases in this context are variations in the
ways members of different social categories are represented that can have harmful downstream
consequences for members of the more disadvantaged group.
Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group.
unsure
Considerations for Using the Data
-
PII Risks and Liability
-
Licenses
-
Known Technical Limitations
-
PII Risks and Liability
-
Licenses
-
Known Technical Limitations
PII Risks and Liability
Licenses
Copyright Restrictions on the Dataset
Based on your answers in the Intended Use part of the Data Overview Section, which of the following
best describe the copyright and licensing status of the dataset?
Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset?
non-commercial use only
Copyright Restrictions on the Language Data
Based on your answers in the Language part of the Data Curation Section, which of the following
best describe the copyright and licensing status of the underlying language data?
Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data?
research use only