wiki_auto_asset_turk
WikiAuto is an English simplification dataset that we paired with ASSET and TURK, two very high-quality evaluation datasets, as test sets. The input is an English sentence taken from Wikipedia and the target a simplified sentence. ASSET and TURK contain the same test examples but have references that are simplified in different ways (splitting sentences vs. rewriting and splitting).
You can load the dataset via:
import datasets
data = datasets.load_dataset('GEM/wiki_auto_asset_turk')
The data loader can be found here.
website
n/a
authors
WikiAuto: Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, Wei Xu; ASSET: Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, and Benoîıt Sagot, and Lucia Specia; TURK: Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch
Quick-Use
Contact Name
If known, provide the name of at least one person the reader can contact for questions about the
dataset.
If known, provide the name of at least one person the reader can contact for questions about the dataset.
WikiAuto: Chao Jiang; ASSET: Fernando Alva-Manchego and Louis Martin; TURK: Wei Xu
Multilingual?
Is the dataset multilingual?
Is the dataset multilingual?
no
Covered Languages
What languages/dialects are covered in the dataset?
What languages/dialects are covered in the dataset?
English
License
What is the license of the dataset?
What is the license of the dataset?
other: Other license
Communicative Goal
Provide a short description of the communicative goal of a model trained for this task on this dataset.
Provide a short description of the communicative goal of a model trained for this task on this dataset.
The goal is to communicate the main ideas of source sentence in a way that is easier to understand by non-native speakers of English.
Additional Annotations?
Does the dataset have additional annotations for each instance?
Does the dataset have additional annotations for each instance?
crowd-sourced
Contains PII?
Does the source language data likely contain Personal Identifying Information about the data creators
or subjects?
Does the source language data likely contain Personal Identifying Information about the data creators or subjects?
no PII
Dataset Overview
-
Where to find the Data and its Documentation
-
Languages and Intended Use
-
Credit
-
Dataset Structure
-
Where to find the Data and its Documentation
-
Languages and Intended Use
-
Credit
-
Dataset Structure
Where to find the Data and its Documentation
Download
What is the link to where the original dataset is hosted?
What is the link to where the original dataset is hosted?
Paper
What is the link to the paper describing the dataset (open access preferred)?
What is the link to the paper describing the dataset (open access preferred)?
BibTex
Provide the BibTex-formatted reference for the dataset. Please use the correct published version
(ACL anthology, etc.) instead of google scholar created Bibtex.
Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex.
WikiAuto:
@inproceedings{jiang-etal-2020-neural,
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
author = "Jiang, Chao and
Maddela, Mounica and
Lan, Wuwei and
Zhong, Yang and
Xu, Wei",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
doi = "10.18653/v1/2020.acl-main.709",
pages = "7943--7960",
}
ASSET:
@inproceedings{alva-manchego-etal-2020-asset,
title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
author = "Alva-Manchego, Fernando and
Martin, Louis and
Bordes, Antoine and
Scarton, Carolina and
Sagot, Beno{\^\i}t and
Specia, Lucia",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.424",
pages = "4668--4679",
}
TURK:
@article{Xu-EtAl:2016:TACL,
author = {Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch},
title = {Optimizing Statistical Machine Translation for Text Simplification},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year = {2016},
url = {https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf},
pages = {401--415}
}
Contact Name
If known, provide the name of at least one person the reader can contact for questions about the
dataset.
If known, provide the name of at least one person the reader can contact for questions about the dataset.
WikiAuto: Chao Jiang; ASSET: Fernando Alva-Manchego and Louis Martin; TURK: Wei Xu
Contact Email
If known, provide the email of at least one person the reader can contact for questions about the
dataset.
If known, provide the email of at least one person the reader can contact for questions about the dataset.
jiang.1530@osu.edu, f.alva@sheffield.ac.uk, louismartincs@gmail.com, wei.xu@cc.gatech.edu
Has a Leaderboard?
Does the dataset have an active leaderboard?
Does the dataset have an active leaderboard?
no
Languages and Intended Use
Multilingual?
Is the dataset multilingual?
Is the dataset multilingual?
no
Covered Languages
What languages/dialects are covered in the dataset?
What languages/dialects are covered in the dataset?
English
Whose Language?
Whose language is in the dataset?
Whose language is in the dataset?
Wiki-Auto contains English text only (BCP-47: en
). It is presented as a translation task
where Wikipedia Simple English is treated as its own idiom. For a statement of what is intended (but not
always observed) to constitute Simple English on this platform, see Simple English in Wikipedia.
Both ASSET and TURK use crowdsourcing to change references, and their language is thus a combination of
the WikiAuto data and the language of the demographic on mechanical Turk
License
What is the license of the dataset?
What is the license of the dataset?
other: Other license
Intended Use
What is the intended use of the dataset?
What is the intended use of the dataset?
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia as a resource to train sentence simplification systems.
The authors first crowd-sourced a set of manual alignments between sentences in a subset of the Simple
English Wikipedia and their corresponding versions in English Wikipedia (this corresponds to the
manual
config in this version of the dataset), then trained a neural CRF system to predict
these alignments.
The trained alignment prediction model was then applied to the other articles in Simple English Wikipedia
with an English counterpart to create a larger corpus of aligned sentences (corresponding to the
auto
and auto_acl
configs here).
ASSET (Alva-Manchego et al., 2020) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from TurkCorpus (Xu et al., 2016) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence splitting in HSplit), the simplifications in ASSET encompass a variety of rewriting transformations.
TURKCorpus is a high quality simplification dataset where each source (not simple) sentence is associated with 8 human-written simplifications that focus on lexical paraphrasing. It is one of the two evaluation datasets for the text simplification task in GEM. It acts as the validation and test set for paraphrasing-based simplification that does not involve sentence splitting and deletion.
Add. License Info
What is the 'other' license of the dataset?
What is the 'other' license of the dataset?
WikiAuto: CC BY-NC 3.0
, ASSET: CC BY-NC 4.0
, TURK:
GNU General Public License v3.0
Primary Task
What primary task does the dataset support?
What primary task does the dataset support?
Simplification
Communicative Goal
Provide a short description of the communicative goal of a model trained for this task on this
dataset.
Provide a short description of the communicative goal of a model trained for this task on this dataset.
The goal is to communicate the main ideas of source sentence in a way that is easier to understand by non-native speakers of English.
Credit
Curation Organization Type(s)
In what kind of organization did the dataset curation happen?
In what kind of organization did the dataset curation happen?
academic
, industry
Curation Organization(s)
Name the organization(s).
Name the organization(s).
Ohio State University, University of Sheffield, Inria, Facebook AI Research, Imperial College London, University of Pennsylvania, John Hopkins University
Dataset Creators
Who created the original dataset? List the people involved in collecting the dataset and their
affiliation(s).
Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s).
WikiAuto: Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, Wei Xu; ASSET: Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, and Benoîıt Sagot, and Lucia Specia; TURK: Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch
Funding
Who funded the data creation?
Who funded the data creation?
WikiAuto: NSF, ODNI, IARPA, Figure Eight AI, and Criteo. ASSET: PRAIRIE Institute, ANR. TURK: NSF
Who added the Dataset to GEM?
Who contributed to the data card and adding the dataset to GEM? List the people+affiliations
involved in creating this data card and who helped integrate this dataset into GEM.
Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM.
GEM v1 had separate data cards for WikiAuto, ASSET, and TURK. They were contributed by Dhruv Kumar and Mounica Maddela. The initial data loader was written by Yacine Jernite. Sebastian Gehrmann merged and extended the data cards and migrated the loader to the v2 infrastructure.
Dataset Structure
Data Fields
List and describe the fields present in the dataset.
List and describe the fields present in the dataset.
source
: A source sentence from one of the datasetstarget
: A single simplified sentence corresponding tosource
references
: In the case of ASSET/TURK, references is a list of strings corresponding to the different references.
Reason for Structure
How was the dataset structure determined?
How was the dataset structure determined?
The underlying datasets have extensive secondary annotations that can be used in conjunction with the GEM version. We omit those annotations to simplify the format into one that can be used by seq2seq models.
Example Instance
Provide a JSON formatted example of a typical instance in the dataset.
Provide a JSON formatted example of a typical instance in the dataset.
{
'source': 'In early work, Rutherford discovered the concept of radioactive half-life , the radioactive element radon, and differentiated and named alpha and beta radiation .',
'target': 'Rutherford discovered the radioactive half-life, and the three parts of radiation which he named Alpha, Beta, and Gamma.'
}
Data Splits
Describe and name the splits in the dataset if there are more than one.
Describe and name the splits in the dataset if there are more than one.
In WikiAuto, which is used as training and validation set, the following splits are provided:
Tain | Dev | Test | |
---|---|---|---|
Total sentence pairs | 373801 | 73249 | 118074 |
Aligned sentence pairs | 1889 | 346 | 677 |
ASSET does not contain a training set; many models use WikiLarge (Zhang and Lapata, 2017) for training. For GEM, Wiki-Auto will be used for training the model.
Each input sentence has 10 associated reference simplified sentences. The statistics of ASSET are given below.
Dev | Test | Total | |
---|---|---|---|
Input Sentences | 2000 | 359 | 2359 |
Reference Simplifications | 20000 | 3590 | 23590 |
The test and validation sets are the same as those of TurkCorpus. The split was random.
There are 19.04 tokens per reference on average (lower than 21.29 and 25.49 for TurkCorpus and HSplit, respectively). Most (17,245) of the referece sentences do not involve sentence splitting.
TURKCorpus does not contain a training set; many models use WikiLarge (Zhang and Lapata, 2017) or Wiki-Auto (Jiang et. al 2020) for training.
Each input sentence has 8 associated reference simplified sentences. 2,359 input sentences are randomly split into 2,000 validation and 359 test sentences.
Dev | Test | Total | |
---|---|---|---|
Input Sentences | 2000 | 359 | 2359 |
Reference Simplifications | 16000 | 2872 | 18872 |
There are 21.29 tokens per reference on average.
Splitting Criteria
Describe any criteria for splitting the data, if used. If there are differences between the splits
(e.g., if the training annotations are machine-generated and the dev and test ones are created by
humans, or if different numbers of annotators contributed to each example), describe them here.
Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.
In our setup, we use WikiAuto as training/validation corpus and ASSET and TURK as test corpora. ASSET and TURK have the same inputs but differ in their reference style. Researchers can thus conduct targeted evaluations based on the strategies that a model should learn.
Dataset in GEM
-
Rationale for Inclusion in GEM
-
GEM-Specific Curation
-
Getting Started with the Task
-
Rationale for Inclusion in GEM
-
GEM-Specific Curation
-
Getting Started with the Task
Rationale for Inclusion in GEM
Why is the Dataset in GEM?
What does this dataset contribute toward better generation evaluation and why is it part of GEM?
What does this dataset contribute toward better generation evaluation and why is it part of GEM?
WikiAuto is the largest open text simplification dataset currently available. ASSET and TURK are high quality test sets that are compatible with WikiAuto.
Similar Datasets
Do other datasets for the high level task exist?
Do other datasets for the high level task exist?
yes
Unique Language Coverage
Does this dataset cover other languages than other datasets for the same task?
Does this dataset cover other languages than other datasets for the same task?
no
Difference from other GEM datasets
What else sets this dataset apart from other similar datasets in GEM?
What else sets this dataset apart from other similar datasets in GEM?
It's unique setup with multiple test sets makes the task interesting since it allows for evaluation of multiple generations and systems that simplify in different ways.
Ability that the Dataset measures
What aspect of model ability can be measured with this dataset?
What aspect of model ability can be measured with this dataset?
simplification
GEM-Specific Curation
Modificatied for GEM?
Has the GEM version of the dataset been modified in any way (data, processing, splits) from the
original curated data?
Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data?
yes
GEM Modifications
What changes have been made to he original dataset?
What changes have been made to he original dataset?
other
Modification Details
For each of these changes, described them in more details and provided the intended purpose of the
modification
For each of these changes, described them in more details and provided the intended purpose of the modification
We removed secondary annotations and focus on the simple input->output
format, but combine
the different sub-datasets.
Additional Splits?
Does GEM provide additional splits to the dataset?
Does GEM provide additional splits to the dataset?
yes
Split Information
Describe how the new splits were created
Describe how the new splits were created
we split the original test set according to syntactic complexity of the source sentences. To characterize sentence syntactic complexity, we use the 8-level developmental level (d-level) scale proposed by Covington et al. (2006) and the implementation of Lu, Xiaofei (2010). We thus split the original test set into 8 subsets corresponding to the 8 d-levels assigned to source sentences. We obtain the following number of instances per level and average d-level of the dataset:
Total nb. sentences | L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | Mean Level |
---|---|---|---|---|---|---|---|---|---|
359 | 166 | 0 | 58 | 32 | 5 | 28 | 7 | 63 | 2.38 |
Split Motivation
What aspects of the model's generation capacities were the splits created to test?
What aspects of the model's generation capacities were the splits created to test?
The goal was to assess performance when simplifying source sentences with different syntactic structure and complexity.
Getting Started with the Task
Pointers to Resources
Getting started with in-depth research on the task. Add relevant pointers to resources that
researchers can consult when they want to get started digging deeper into the task.
Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task.
There are recent supervised (Martin et al., 2019, Kriz et al., 2019, Dong et al., 2019, Zhang and Lapata, 2017) and unsupervised (Martin et al., 2020, Kumar et al., 2020, Surya et al., 2019) text simplification models that can be used as baselines.
Technical Terms
Technical terms used in this card and the dataset and their definitions
Technical terms used in this card and the dataset and their definitions
The common metric used for automatic evaluation is SARI (Xu et al., 2016).
Previous Results
-
Previous Results
-
Previous Results
Previous Results
Measured Model Abilities
What aspect of model ability can be measured with this dataset?
What aspect of model ability can be measured with this dataset?
Simplification
Metrics
What metrics are typically used for this task?
What metrics are typically used for this task?
Other: Other Metrics
, BLEU
Other Metrics
Definitions of other metrics
Definitions of other metrics
SARI: A simplification metric that considers both input and references to measure the "goodness" of words that are added, deleted, and kept.
Proposed Evaluation
List and describe the purpose of the metrics and evaluation methodology (including human
evaluation) that the dataset creators used when introducing this task.
List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task.
The original authors of WikiAuto and ASSET used human evaluation to assess the fluency, adequacy, and simplicity (details provided in the paper). For TURK, the authors measured grammaticality, meaning-preservation, and simplicity gain (details in the paper).
Previous results available?
Are previous results available?
Are previous results available?
no
Dataset Curation
-
Original Curation
-
Language Data
-
Structured Annotations
-
Consent
-
Private Identifying Information (PII)
-
Maintenance
-
Original Curation
-
Language Data
-
Structured Annotations
-
Consent
-
Private Identifying Information (PII)
-
Maintenance
Original Curation
Original Curation Rationale
Original curation rationale
Original curation rationale
Wiki-Auto provides a new version of the Wikipedia corpus that is larger, contains 75% less defective pairs and has more complex rewrites than the previous WIKILARGE dataset.
ASSET was created in order to improve the evaluation of sentence simplification. It uses the same input sentences as the TurkCorpus dataset from (Xu et al., 2016). The 2,359 input sentences of TurkCorpus are a sample of "standard" (not simple) sentences from the Parallel Wikipedia Simplification (PWKP) dataset (Zhu et al., 2010), which come from the August 22, 2009 version of Wikipedia. The sentences of TurkCorpus were chosen to be of similar length (Xu et al., 2016). No further information is provided on the sampling strategy.
The TurkCorpus dataset was developed in order to overcome some of the problems with sentence pairs from Standard and Simple Wikipedia: a large fraction of sentences were misaligned, or not actually simpler (Xu et al., 2016). However, TurkCorpus mainly focused on lexical paraphrasing, and so cannot be used to evaluate simplifications involving compression (deletion) or sentence splitting. HSplit (Sulem et al., 2018), on the other hand, can only be used to evaluate sentence splitting. The reference sentences in ASSET include a wider variety of sentence rewriting strategies, combining splitting, compression and paraphrasing. Annotators were given examples of each kind of transformation individually, as well as all three transformations used at once, but were allowed to decide which transformations to use for any given sentence.
An example illustrating the differences between TurkCorpus, HSplit and ASSET is given below:
Original: He settled in London, devoting himself chiefly to practical teaching.
TurkCorpus: He rooted in London, devoting himself mainly to practical teaching.
HSplit: He settled in London. He devoted himself chiefly to practical teaching.
ASSET: He lived in London. He was a teacher.
Communicative Goal
What was the communicative goal?
What was the communicative goal?
The goal is to communicate the same information as the source sentence using simpler words and grammar.
Sourced from Different Sources
Is the dataset aggregated from different data sources?
Is the dataset aggregated from different data sources?
yes
Source Details
List the sources (one per line)
List the sources (one per line)
Wikipedia
Language Data
How was Language Data Obtained?
How was the language data obtained?
How was the language data obtained?
Found
Where was it found?
If found, where from?
If found, where from?
Single website
Language Producers
What further information do we have on the language producers?
What further information do we have on the language producers?
The dataset uses language from Wikipedia: some demographic information is provided here.
Data Validation
Was the text validated by a different worker or a data curator?
Was the text validated by a different worker or a data curator?
not validated
Was Data Filtered?
Were text instances selected or filtered?
Were text instances selected or filtered?
algorithmically
Filter Criteria
What were the selection criteria?
What were the selection criteria?
The authors mention that they "extracted 138,095 article pairs from the 2019/09 Wikipedia dump using an improved version of the WikiExtractor library". The SpaCy library is used for sentence splitting.
Structured Annotations
Additional Annotations?
Does the dataset have additional annotations for each instance?
Does the dataset have additional annotations for each instance?
crowd-sourced
Number of Raters
What is the number of raters
What is the number of raters
11<n<50
Rater Qualifications
Describe the qualifications required of an annotator.
Describe the qualifications required of an annotator.
WikiAuto (Figure Eight): No information provided.
ASSET (MTurk):
- Having a HIT approval rate over 95%, and over 1000 HITs approved. No other demographic or compensation information is provided.
- Passing a Qualification Test (appropriately simplifying sentences). Out of 100 workers, 42 passed the test.
- Being a resident of the United States, United Kingdom or Canada.
TURK (MTurk):
- Reference sentences were written by workers with HIT approval rate over 95%. No other demographic or compensation information is provided.
Raters per Training Example
How many annotators saw each training example?
How many annotators saw each training example?
1
Raters per Test Example
How many annotators saw each test example?
How many annotators saw each test example?
5
Annotation Service?
Was an annotation service used?
Was an annotation service used?
yes
Which Annotation Service
Which annotation services were used?
Which annotation services were used?
Amazon Mechanical Turk
, Appen
Annotation Values
Purpose and values for each annotation
Purpose and values for each annotation
WikiAuto: Sentence alignment labels were crowdsourced for 500 randomly sampled document pairs (10,123 sentence pairs total). The authors pre-selected several alignment candidates from English Wikipedia for each Simple Wikipedia sentence based on various similarity metrics, then asked the crowd-workers to annotate these pairs. Finally, they trained their alignment model on this manually annotated dataset to obtain automatically aligned sentences (138,095 document pairs, 488,332 sentence pairs). No demographic annotation is provided for the crowd workers. The Figure Eight platform now part of Appen) was used for the annotation process.
ASSET: The instructions given to the annotators are available here.
TURK: The references are crowdsourced from Amazon Mechanical Turk. The annotators were asked to provide simplifications without losing any information or splitting the input sentence. No other demographic or compensation information is provided in the TURKCorpus paper. The instructions given to the annotators are available in the paper.
Any Quality Control?
Quality control measures?
Quality control measures?
none
Consent
Any Consent Policy?
Was there a consent policy involved when gathering the data?
Was there a consent policy involved when gathering the data?
yes
Consent Policy Details
What was the consent policy?
What was the consent policy?
Both Figure Eight and Amazon Mechanical Turk raters forfeit the right to their data as part of their agreements.
Private Identifying Information (PII)
Contains PII?
Does the source language data likely contain Personal Identifying Information about the data
creators or subjects?
Does the source language data likely contain Personal Identifying Information about the data creators or subjects?
no PII
Justification for no PII
Provide a justification for selecting no PII
above.
Provide a justification for selecting no PII
above.
Since the dataset is created from Wikipedia/Simple Wikipedia, all the information contained in the dataset is already in the public domain.
Maintenance
Any Maintenance Plan?
Does the original dataset have a maintenance plan?
Does the original dataset have a maintenance plan?
no
Broader Social Context
-
Previous Work on the Social Impact of the Dataset
-
Impact on Under-Served Communities
-
Discussion of Biases
-
Previous Work on the Social Impact of the Dataset
-
Impact on Under-Served Communities
-
Discussion of Biases
Previous Work on the Social Impact of the Dataset
Usage of Models based on the Data
Are you aware of cases where models trained on the task featured in this dataset ore related tasks
have been used in automated systems?
Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems?
no
Impact on Under-Served Communities
Addresses needs of underserved Communities?
Does this dataset address the needs of communities that are traditionally underserved in language
technology, and particularly language generation technology? Communities may be underserved for
exemple because their language, language variety, or social or geographical context is
underepresented in NLP and NLG resources (datasets and models).
Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models).
no
Discussion of Biases
Any Documented Social Biases?
Are there documented social biases in the dataset? Biases in this context are variations in the
ways members of different social categories are represented that can have harmful downstream
consequences for members of the more disadvantaged group.
Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group.
yes
Links and Summaries of Analysis Work
Provide links to and summaries of works analyzing these biases.
Provide links to and summaries of works analyzing these biases.
The dataset may contain some social biases, as the input sentences are based on Wikipedia. Studies have shown that the English Wikipedia contains both gender biases (Schmahl et al., 2020) and racial biases (Adams et al., 2019).
Considerations for Using the Data
-
PII Risks and Liability
-
Licenses
-
Known Technical Limitations
-
PII Risks and Liability
-
Licenses
-
Known Technical Limitations
PII Risks and Liability
Potential PII Risk
Considering your answers to the PII part of the Data Curation Section, describe any potential
privacy to the data subjects and creators risks when using the dataset.
Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset.
All the data is in the public domain.
Licenses
Copyright Restrictions on the Dataset
Based on your answers in the Intended Use part of the Data Overview Section, which of the following
best describe the copyright and licensing status of the dataset?
Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset?
open license - commercial use allowed
Copyright Restrictions on the Language Data
Based on your answers in the Language part of the Data Curation Section, which of the following
best describe the copyright and licensing status of the underlying language data?
Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data?
open license - commercial use allowed
Known Technical Limitations
Technical Limitations
Describe any known technical limitations, such as spurrious correlations, train/test overlap,
annotation biases, or mis-annotations, and cite the works that first identified these limitations
when possible.
Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible.
The dataset may contain some social biases, as the input sentences are based on Wikipedia. Studies have shown that the English Wikipedia contains both gender biases (Schmahl et al., 2020) and racial biases (Adams et al., 2019).
Unsuited Applications
When using a model trained on this dataset in a setting where users or the public may interact with
its predictions, what are some pitfalls to look out for? In particular, describe some applications
of the general task featured in this dataset that its curation or properties make it less suitable
for.
When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for.
Since the test datasets contains only 2,359 sentences that are derived from Wikipedia, they are limited to a small subset of topics present on Wikipedia.